PUMP VIBRATION GUIDE The most common factors affecting pump vibration include: - Mechanical unbalance of rotating parts - Mechanical unbalance from abrasive fluids wear - Pump and driver natural frequency and resonance - Miscellaneous mechanical problems - Hydraulic disturbances - Hydraulic resonance in piping - Poor structural rigidity Table 1 from ANSI/HI 9.6.4 can help identify possible sources of high pump vibration. For more information on pump vibration, reference ANSI/HI 9.6.4 Rotodynamic Pumps for Vibration Measurements and Allowable Values. | High Pump Vibration Source Identification | | | | |--|------------------------------------|--|---| | Symptom(s) | Frequency (CPM) | Possible Cause | Comments | | Radial plane vibration,
proportional to unbalance
and/or speed | 1 × RPM | Imbalance Impeller imbalance Clogging Weak foundation Bad pipe support | Common source of vibration | | Vibrates at one speed
only | 1 × RPM | Mechanical Resonance Motor imbalance Impeller imbalance Pump design Weak foundation Bad pipe support | Confirm by bump test
Natural frequency at run speed | | | N × RPM | | Confirm by bump test
Natural frequency at blade-
pass frequency
N = Blade-pass frequency | | | N × RPM | Acoustic Resonance | Confirm by waveform testing
N = Blade-pass frequency | | | N×RPM | Acoustic Resonance | Use pressure transducers to
measure fluid pressure
pulsations in the piping
N = Blade-pass frequency | | Axial vibration is greater
than 50% of radial
vibration levels | 1 × RPM
V × RPM | Vortexing Intake | Observe intake flow for stability
V = number of impeller vanes | | | 1 × RPM
2 × RPM | Coupling Misalignment
Bent Shaft | Confirm with dial indicators to document shaft runout | | Erratic vibration | High
> 6 × RPM | Bad Antifriction
Bearings | Use velocity to measure
Listen at bearing housings | | Vibration stops instant power is shut off | 1 × RPM
1 or 2 ×
Synch speed | Electrical | Bad motor, power source, or
variable-frequency drive | Source: Hydraulics Institute Pump FAQs: What factors cause excess pump vibration, and how can the specific cause be identified?